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Abstract

In polarized proton operation in the Relativistic Heavy
Ion Collider (RHIC) coherent beam–beam modes are rou-
tinely observed with beam transfer function measurements.
These modes can become unstable under external excita-
tion or in the presence of impedance. This becomes even
more relevant in the presence of head-on compensation,
which reduces the beam–beam tune spread and hence Lan-
dau damping. We report on experiments and simulations
carried out to understand the impact of coherent modes on
operation with electron lenses.

INTRODUCTION

The Relativistic Heavy Ion Collider (RHIC) is currently
operating between the 2/3 and 7/10 resonances with a
beam–beam parameter of approximately 0.015 leaving lit-
tle space for significant increase in luminosity. The RHIC
luminosity upgrade program [1] aims at an increase of the
luminosity by a factor of 2. In order to accommodate the
significant increase in beam–beam tune spread it was de-
cided to install electron lenses to compensate for the beam–
beam non-linearities and effectively reduce the tune spread
at constant bunch intensity. This technology was first de-
veloped at the Tevatron where it was tested for head-on
compensation [2] and then successfully used for long-range
compensation, abort gap cleaning [3] and collimation stud-
ies [4].

The RHIC collider consists of two rings where the beams
are colliding in interaction points IP6 and IP8 as shown in
Fig. 1. The two electron lenses, one for each ring, will
be located close to IP10. Studies regarding dynamic aper-
ture were performed and showed improvements for high
beam–beam parameter [5]. The details about the status
and construction of the electron lens can be found in Ref.
[6]. These simulations however did not cover the coherent
beam–beam effects related to the electron lens. The failure
in increasing the luminosity in the DCI (Dispositif de Colli-
sions dans l’Igloo) four-beam experiment (e+e−e+e−) was
attributed to coherent effects [7], which should therefore be
carefully investigated. This paper reports on strong–strong
beam–beam simulations performed using the RHIC lattice
and upgrade parameters and related beam experiments to
understand the impact of the coherent beam–beam effects
in the presence of electron lenses.
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Figure 1: Layout of the RHIC collider. The colliding IPs
are denoted by the red stars, the head-on compensation by
the green star.

MODEL

The simulation code BeamBeam3D [8] was used for
this study. BeamBeam3D is a fully parallelized three-
dimensional code allowing for self-consistent field calcu-
lation of arbitrary distributions and tracking of multiple
bunches. The transport from one IP to the other is done
through linear transfer maps. The beam fields are calcu-
lated by solving the Poisson equation using a shifted in-
tegrated Green function method which is efficiently com-
puted with a FFT-based algorithm on a uniform grid.

In order to correctly model the RHIC lattice the Twiss
parameters are extracted at each IP, including the one where
the head-on compensation takes place, and used to compute
the transfer maps. As shown in Fig. 1, the symmetry of
the different colliding IPs allows one to reduce the number
of bunches to three per beam to simulate the full collision
pattern.

The electron lens is modelled as a thin-lens Gaussian
beam located exactly at IP10 for both beams. The size of
the electron beam is determined by the lattice parameters.
The phase advance between IP8 and IP10 is set exactly to
π by artificially shifting the phase between these two IPs
and evenly compensating the global tune change with the
other arcs.

Figure 2 shows the footprints calculated with Beam-
Beam3D for an intensity of 3.0 × 1011 protons per bunch
without compensation and with half compensation. The
footprint with compensation was artificially shifted for bet-
ter visibility. As expected, we observe a reduction of the
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Figure 2: Tune footprint computed with BeamBeam3D for
an intensity of 3.0×1011 protons per bunch with and with-
out compensation. No compensation in red, half compen-
sation in blue.

tune spread by a factor of 2. One can also see that the foot-
print without compensation is crossing the 3Qy resonance,
indicating that the machine cannot be operated with such
high beam–beam parameter.

COHERENT BEAM–BEAM
SIMULATIONS

In addition to the single-particle effects described in the
previous sections, colliding beams will experience coherent
dipole oscillation driven by the beam–beam force. In the
simplest case of one interaction point two main modes arise
corresponding to the two bunches oscillating in phase (σ-
mode) or out of phase (π-mode). The σ-mode will oscillate
at the betatron frequency and the π-mode will be shifted,
negatively for equally charged beams, with respect to the
σ-mode by an amount Y · ξ, where Y is the Yokoya factor
and ξ the beam–beam parameter [9].

The collision pattern at RHIC can be reduced to three
colliding bunches theoretically giving rise to six coherent
dipole modes. In reality, only two modes are observed as
the other ones are located inside or very close to the inco-
herent tune spread and are Landau damped.
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Figure 3: Simulated coherent modes with (top) and with-
out (bottom) half compensation with a bare lattice tune of
0.685.

Figure 3 shows a strong–strong simulation of the RHIC
lattice with and without compensation. The bare lattice
tunes used for this simulation are (0.695, 0.685) as defined
in the design and the beam–beam parameter ξ per IP is
0.011. Only the vertical plane is shown but a similar picture
is observed in the horizontal plane. The coherent modes are
excited with an initial kick of 0.1 σ.

As predicted by the weak–strong simulations in Fig. 2,
the incoherent continuum is reduced by the head-on com-
pensation. The bare lattice tunes, or σ-mode in this plot,
are shifted by ξ/2 ≈ 0.005 corresponding to the coherent
beam–beam tune shift induced by the quadrupolar part of
the beam–beam force. This effect can be easily predicted
and corrected for. The phase advance between IPs is also
modified leading to slightly different relative frequencies
of the modes.

In the presence of head-on compensation, the distance
in tune space covered by the coherent modes therefore re-
mains approximately constant while the incoherent tune
spread is significantly reduced. All six coherent modes
are now observed as they are moved out of the continuum
and not Landau damped any more. Head-on compensation
with electron lenses reduces the intrinsic stabilizing prop-
erties of the beam–beam interaction. This could give rise
to coherent dipole instabilities driven by external sources
of excitation or impedance.

EFFECT OF THE 2/3 RESONANCE ON
COHERENT MODES

As seen in Fig. 3, even if the incoherent tune spread is
reduced, the tune space covered by the coherent modes re-
mains constant and will overlap the 2/3 resonance in the
case of the RHIC working point. While it is difficult to
experimentally reproduce the reduction of the tune spread
induced by the electron lenses, we verified experimentally
that driving the π-mode onto this resonance would not ex-
cite coherent dipole motion or degrade the beam lifetime.

For this experiment we moved only the two tunes of the
Blue beam towards the 2/3 resonance keeping the differ-
ence Qx − Qy = 0.004, see Figs. 4 and 5. This was done
with a beam–beam parameter estimated to be 0.011. The
onset of losses is observed at (0.687, 0.683); at these tunes
the location of the π-mode is 0.669 and the zero-amplitude
particles are at 0.672: no emittance blow-up is observed
at that point. Losses are observed only in the Blue beam,
indicating that the π-mode, which has the same frequency
for both beams, is insensitive to the 2/3 resonance. The stop
band of the 2/3 resonance with non-colliding beams was es-
timated to be around 0.005, which is consistent with losses
of low-amplitude particles in our case. As we moved the
beam closer to the resonance strong losses associated with
emittance blow-up were observed only in the Blue beam.
In addition, no unusual activity was observed in the tune
spectrum during the whole experiment, pointing towards a
reduction of the dynamic aperture rather than the excitation
of coherent modes.
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Figure 4: Tune scan towards the 2/3 resonance with col-
liding beams. The top plot shows the emittance during
the scan and the bottom plot the beam decay. The tunes
were reconstructed using measurements with non-colliding
beams.
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Figure 5: BTF (Beam Transfer Function) data during the
tune scan towards the 2/3 resonance.

The tune scan was reproduced in numerical simulations.
Figure 6 shows the FFT of the centre of motion during the
the tune scan. It is observed that even when the π-mode
is on top of the 2/3 resonance it remains stable. Figure 7
shows the vertical emittance growth for both beams. Only
the Blue beam, pushed towards the resonance, is affected
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Figure 6: Simulated spectrum reproducing the experiment.
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Figure 7: Simulated emittance during the tune scan.

and a blow-up is observed only when the beam–beam tune
spread overlaps the resonance. This is very consistent with
experimental data and confirms that the 2/3 resonance is not
a concern for beam stability. The only non-linear element
in the model is the beam–beam interaction. The absence of
sextupoles explains why the stop band of the resonance is
narrower in the numerical simulation.

COHERENT MODE SUPPRESSION
Coherent beam–beam mode suppression has been inves-

tigated in Refs. [10, 11], where it was shown that the fol-
lowing techniques can be used to damp the modes:

• Phase advance adjustment between colliding IPs

• Synchro–betatron coupling. If ξ ≈ Qs, the π-mode
can be damped by the sidebands of the continuum

• Beams colliding on different working points (tune
split)

Although these effects could all be reproduced in simu-
lations, one has to consider the constraints associated with
the machine layout and beam parameters. Due to the mag-
net powering scheme in the RHIC there is very little flex-
ibility to adjust the phase advance between the colliding
IPs (IP6 and IP8). The synchrotron tune Qs is of the order
of 5.0 × 10−4, which is much smaller than the expected
beam–beam parameter in the presence of head-on compen-
sation (ξ ≈ 0.02–0.03) making it impossible to profit from
synchro–betatron coupling. This leaves the tune split as the
only option for coherent mode suppression in the RHIC.

To fully suppress the coherent modes the tune split be-
tween the two beams has to be larger than the beam–beam
parameter, in which case the coherent modes will cluster
inside the incoherent continuum and experience Landau
damping [10]. This can be achieved at the RHIC with tunes
of about (0.695, 0.685) for the Blue beam and (0.74, 0.73)
for the Yellow beam. Figure 8 shows an example of a BTF
measurement with the beams on different tunes. The co-
herent modes are completely suppressed, as expected from
the theory.
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Figure 8: BTF measurement with split tunes.

Figure 9 shows emittance measurements over four con-
secutive stores with split tunes. A strong emittance blow-up
is observed in three fills out of four as soon as the beams are
brought into collision, leading to poor luminosity perfor-
mance. For comparison, the emittance at the beginning of
the stores is generally around 15 mm mrad for normal op-
eration. This behaviour for colliding beams with unequal
tunes had been predicted in past simulations and theoretical
analysis [11], where it was stated that operating a collider
with unequal tunes could lead to coherent beam–beam res-
onance excitation and, providing the modes lie inside the
incoherent continuum, emittance blow-up.
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Figure 9: Emittance measurements during fills with split
tunes.

Using the estimated working points (0.689, 0.691) and
(0.74, 0.73) and beam–beam parameter (0.013) one can
compute the frequencies of the coherent modes using a
rigid bunch model. In this specific case the machine
was operated in the vicinity of a resonance of the form
4Q1 − Q2, which is excited by offset collisions. Numeri-
cal simulations were carried out to assess the impact of this
resonance on emittance. The results of these simulations
are shown in Fig. 10, where three cases were considered:

• Head-on collisions with tunes close to the resonance
(experimental conditions)

• Collisions with an offset of 1σ in the horizontal plane
with tunes close to the resonance
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Figure 10: Simulated emittance growth in the vicinity of
the resonance for head-on interactions (bottom), separated
beams (middle) and separated beams away from the reso-
nance (top).

• Collisions with an offset of 1σ in the horizontal plane
with tunes away from the resonance

A strong emittance blow-up is observed in the case of
offset collisions with working points close to the resonance
condition. When the beams are colliding head-on or the
working points are moved away from the resonance the
conditions simulated for equal tunes are almost recovered.
Simulations appear to confirm the hypothesis of a coherent
beam–beam resonance of odd order. We could expect that
by properly setting the working points to avoid resonances
nominal luminosity performance could be achieved. An-
other important parameter in the RHIC is the polarization.
During the split tune experiment a very poor polarization
was measured for the Yellow beam (0.74, 0.73), ruling out
the possibility of running the RHIC in this configuration.
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Figure 11: Emittance growth in the presence of white noise
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Figure 11 shows the emittance growth due to white-noise
excitation. In this case, beam parameters were set to be
away from any low-order resonance. It is clearly observed
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Table 1: Stabilizing detuning coefficients derived from
tracking simulation with impedance and RHIC non-linear
model.

∂Qx/∂εx ∂Qy/∂εy ∂Qy/∂εx
m−1 m−1 m−1

Tracking 607 607 417
Non-linear model 314 387 463

that colliding the beams with unequal tunes degrades the
situation and makes the beams more sensitive to external
excitation. This was not verified experimentally and would
need confirmation but could become an issue if operation
with split tunes is considered for a collider.

MACHINE IMPEDANCE

Head-on compensation with electron lenses will signif-
icantly reduce the beam–beam tune spread and Landau
damping. The interplay with machine impedance was stud-
ied in numerical simulations using the RHIC impedance
model which takes into account the contribution of stripline
BPMs (Beam Position Monitor), bellows and resistive wall.
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Figure 12: Beam stability with machine impedance only
and including electron lens for Q′ = 2.0.

Figure 12 shows the results of simulations for a chro-
maticity of 2.0, which corresponds to what is generally
used in regular RHIC operation. The bottom plot is a scan
in octupolar detuning with impedance only. Stability is
achieved for a detuning coefficient δQx/δεx = 607 m−1.
Table 1 summarizes the stabilizing coefficient obtained
from tracking simulations and the detuning coefficients de-
rived from the RHIC non-linear model. Considering the
uncertainties from the impedance model and the difficulty
in accurately computing the stability threshold from track-
ing simulation, it is not unlikely that the machine non-
linearities provide sufficient detuning to stabilize the beam.
This would be consistent with the fact that instabilities
are generally not observed during RHIC polarized proton
runs. Even when half-compensated the beam–beam non-
linearities will provide significantly larger detuning than

the results from Table 1. Machine impedance is therefore
not considered to become an issue for stability. This was
confirmed by simulations as shown in the top plot of Fig.
12, where the beam is fully stable with electron lenses run-
ning at half compensation.

ELECTRON LENS DRIVEN TMCI

When a proton bunch interacts with the electron beam
it will drive Larmor oscillations of the electrons along the
interaction region resulting in an s-dependent kick onto
the proton bunch. This can be interpreted as an electron
lens impedance comparable to or larger than the machine
impedance. Its strength depends on the electron lens pa-
rameters and under certain conditions can lead to trans-
verse mode coupling instabilities (TMCI). This effect was
studied in detail in Ref. [12], where it was shown that the
s-dependent momentum change of the protons can be mod-
elled with the following wake function:

∆px = W [∆x sin(ks) + ∆y(1− cos(ks))], (1)

where ∆x and ∆y are the offsets of the source in the hori-
zontal and vertical planes respectively and W is a constant
depending on both the beam–beam parameters of the elec-
tron and proton beams and the solenoid field B. A similar
equation is also valid for the vertical plane y. The variable
k is defined as

k =
ωL

(1 + βe)c
, (2)

where βe is the relativistic β of the electron beam, c is the
speed of light and ωL is the Larmor angular frequency de-
fined as

ωL =
eB

γem
. (3)

Using this wake function and considering uniform and
equal transverse distributions for the proton and electron
beams, it is possible to analytically derive the TMCI thresh-
old and hence the required solenoid field to ensure stability.
This threshold can be expressed expressed as [12]

Bth = 1.3
eNpξe

r2
√

∆QQs
, (4)

where Np is the proton bunch intensity, ξe is the electron
lens beam–beam parameter, r is the radius of the beam
(r ≈ 2σ for a Gaussian distribution), ∆Q is the separa-
tion between horizontal and vertical tunes and Qs is the
synchrotron tune. Using typical RHIC parameters (Np =
3.0 × 1011 protons per bunch, ξe = 0.011, ∆Q = 0.01,
Qs = 5.0 × 10−4 and r ≈ 0.8 mm), a threshold field of
14 T is found, which is approximately a factor 2 above the
design field of 6 T. This six-dimensional electron lens in-
teraction was built into the code BeamBeam3D to study
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beam stability with an electron lens in multi-particle track-
ing simulations. Benchmarking with theoretical predic-
tions was done using linearized beam–beam kicks, which
allows for direct comparison.

Tracking
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Figure 13: Synchro–betatron mode frequencies and ampli-
tudes (colours) as a function of the solenoid field and using
a linearized model (no Landau damping). The transverse
mode coupling instability occurs at around 14 T.

Figure 13 shows the results of this benchmarking using
the same beam parameters as the field threshold compu-
tation from Eq. (4). The transverse mode coupling insta-
bility occurs at around 14 T, which is consistent with the-
oretical expectations. These results only include interac-
tions with an electron lens; in the presence of beam–beam
(proton–proton) interactions coherent motion is driven by
these additional interactions and the mode frequencies are
modified. This is especially true in the presence of strong
synchro–betatron coupling from the beam–beam interac-
tion, which, in the case of the RHIC, is a result of the hour-
glass effect (β∗/σs ≈ 1, no crossing angle).
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This is illustrated in Fig. 14, where it is clearly seen that
the synchrotron sidebands are deflected by the beam–beam
π and σ modes. In this case the mode frequencies were

computed using a linearized model based on the circulant
matrix approach [13], in which case the Yokoya factor is
equal to 1.
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Figure 15: Synchro–betatron mode frequencies and am-
plitudes (colours) as a function of bunch intensity for a
solenoid field of 6 T and using a linearized model (no Lan-
dau damping). The transverse mode coupling instability
occurs at around 1.0× 1011 protons per bunch.

Figure 15 shows tracking results including beam–beam
and electron lens using linearized beam–beam kicks and
RHIC beam parameters. The expected threshold from
Eq. (4) is 2.0 × 1011 in this case. The mode coupling in-
stability in the presence of coherent beam–beam effects is
reduced by a factor 2 for these parameters with respect to
theoretical expectations without coherent beam–beam ef-
fects (the threshold in terms of solenoid field scales with
N2
p ).
The above simulations were carried out using a lin-

earized model which does not include the amplitude detun-
ing related to the non-linearities of the beam–beam force
and hence its contribution to Landau damping. Landau
damping could provide additional stability and mitigate
the electron lens driven TMCI. In order to include this ef-
fect, we carried out tracking simulations using the full non-
linear beam–beam force. The proton–proton interactions
are computed using a Poisson solver, making no assump-
tion on the beam distribution, while the interaction with the
electron lens is done assuming elliptical Gaussian shapes
but allowing for a tilt angle of the phase-space distribu-
tion in order to account for the coupling introduced by the
solenoid field; more detailed studies would be required to
verify the validity of the Gaussian approximation and its
impact on Landau damping. The proton bunch is sliced
longitudinally into 50 slices, which correspond to 10 times
the wavelength of the Larmor oscillations. Although the
high-frequency component of the wake function should not
have a significant impact on stability, it is necessary to per-
form systematic studies regarding the effect of the number
of slices. This may introduce some aliasing issues when
sampling the electron oscillations and eventual smoothing
approximations could apply. The importance of these pa-
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rameters is under investigation and will not be covered in
detail in this paper.
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Figure 16: Solenoid field scan including non-linear beam–
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Figure 16 shows the results of a solenoid field scan
including Landau damping for cases with and without
proton–proton interactions. The case without proton–
proton interactions at the bottom provides a direct compari-
son with theoretical predictions and illustrates the impact of
Landau damping. The theoretical threshold was estimated
to be approximately 14 T. Including Landau damping, this
threshold is significantly reduced and stability is achieved
for a solenoid field between 1 T and 6 T, which is within
the RHIC electron lens design. Unfortunately, the degrada-
tion due to coherent beam–beam effects is also observed in
the presence of Landau damping and the beam could not be
stabilized for a field up to 20 T, which is well above design.
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Figure 17: Rigid bunch damper gain scan with Q′ = 2.0
(bottom) and Q′ = 5.0 (top).

As demonstrated in Ref. [14], the combination of a
strong rigid bunch damper and relatively high chromaticity
can provide stability to higher order head–tail modes (m >
0) and could even push the TMCI to higher threshold. Fig-
ure 17 shows the results of tracking simulations including
a rigid bunch damper and chromaticity. At Q′ = 2.0,
which corresponds to normal RHIC running chromaticity,
a clear improvement is observed when the damper gain is

increased but the beam remains unstable even at high gain.
Increasing the chromaticity makes the damper more effi-
cient against the mode coupling instability and the beam
can be stabilized with a damper gain of 100 turns.

CONCLUSIONS
Head-on beam–beam compensation with electron lenses

reduces the beam–beam tune spread allowing one to ac-
commodate larger bunch intensity at the current RHIC
working point. In return, the contribution from the beam–
beam tune spread to Landau damping is reduced while the
coherent beam–beam modes remain unaffected. This may
have some detrimental effects on beam stability and lumi-
nosity performance. Beam experiments were conducted at
the RHIC to understand the impact of coherent beam–beam
effects on beam dynamics:

• Impact of the 2/3 resonance: the beam–beam π-
mode was driven onto the 2/3 resonance without effect
on beam stability or cross talk between beams. Losses
and emittance blow-up were observed in the beam
moving towards the resonance, which is attributed to
incoherent effects when the tune spread overlaps the
resonance stop band. This is consistent with theoreti-
cal estimates and tracking simulations

• Coherent mode suppression: coherent beam–beam
mode suppression with tune split was attempted. This
resulted in significant luminosity performance degra-
dation due to emittance blow-up when bringing the
beams into collision. This effect could be attributed
to the excitation of coherent beam–beam resonance as
predicted in Ref. [11]. Tracking simulations also sup-
port this hypothesis

Numerical simulations were carried out to understand
possible limitations coming from machine impedance and
electron lens impedance. It was shown that the intrin-
sic machine non-linearities provide almost sufficient detun-
ing to stabilize instabilities driven by machine impedance.
This is consistent with experimental data, as instabilities
are generally not observed in regular operation. The elec-
tron lenses are foreseen to compensate for only half of the
full beam–beam tune spread. The remaining tune spread
would still be significantly larger than the simulated sta-
bilizing octupolar detuning, leading to the conclusion that
machine impedance is not a limitation for operation with
electron lenses. Another aspect investigated in this paper is
the electron lens driven TMCI. It was found that the RHIC
design field is not sufficient to ensure stability with the
current machine layout and beam parameters. A possible
solution to overcome this issue would be the implementa-
tion of a bunch-by-bunch transverse damper combined with
slightly higher than nominal chromaticities. These results
are preliminary and more systematic studies and model re-
finements are required to draw final conclusions. The elec-
tron lens driven TMCI could also be mitigated using beam
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parameters such as the distance between the horizontal and
vertical tunes or the β-function at the electron lens. These
alternative solutions should be investigated in future stud-
ies.
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